Consequence Relations with Real Truth Values

In Ofer Arieli & Anna Zamansky (eds.), Arnon Avron on Semantics and Proof Theory of Non-Classical Logics. Springer Verlag. pp. 249-264 (2021)
  Copy   BIBTEX

Abstract

Syntax and semantics in Łukasiewicz infinite-valued sentential logic Ł are harmonized by revising the Bolzano-Tarski paradigm of “semantic consequence,” according to which, θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} follows from Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta $$\end{document} iff every valuation v that satisfies all formulas in Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta $$\end{document} also satisfies θ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta.$$\end{document} For θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} to be a consequence of Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta $$\end{document}, we also require that any infinitesimal perturbation of v that preserves the truth of all formulas of Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta $$\end{document} also preserves the truth of θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}. An elementary characterization of Łukasiewicz implication shows that the Łukasiewicz axiom →Y)→→X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rightarrow Y ) \rightarrow \rightarrow X )$$\end{document} guarantees the continuity and the piecewise linearity of the implication operation →\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rightarrow $$\end{document}, an appropriate fault-tolerance property of any logic of [0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{[0,1]}\,}}$$\end{document}-valued observables. The directional derivability of the functions coded by all ψ∈Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \in \Theta $$\end{document} and by θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} then provides a quantitative formulation of our refinement of Bolzano-Tarski consequence, which turns out to coincide with the time-honored syntactic Ł-consequence.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,122

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Functional dependencies, supervenience, and consequence relations.I. L. Humberstone - 1993 - Journal of Logic, Language and Information 2 (4):309-336.
Consequence Mining: Constans Versus Consequence Relations.Denis Bonnay & Dag Westerståhl - 2012 - Journal of Philosophical Logic 41 (4):671-709.
What is a Non-truth-functional Logic?João Marcos - 2009 - Studia Logica 92 (2):215-240.
Some supervaluation-based consequence relations.Philip Kremer & Michael Kremer - 2003 - Journal of Philosophical Logic 32 (3):225-244.
Ray on Tarski on logical consequence.William H. Hanson - 1999 - Journal of Philosophical Logic 28 (6):605-616.
Judgment and consequence relations.Marcus Kracht - 2010 - Journal of Applied Non-Classical Logics 20 (4):423-435.
Cognitivism about imperatives.Josh Parsons - 2012 - Analysis 72 (1):49-54.
Many-Valued Logics.Nicholas J. J. Smith - 2012 - In Gillian Russell & Delia Graff Fara (eds.), The Routledge Companion to Philosophy of Language. Routledge. pp. 636--51.

Analytics

Added to PP
2022-03-09

Downloads
3 (#1,582,847)

6 months
2 (#889,309)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references