Control design for a bottoming solid oxide fuel cell gas turbine hybrid system

Abstract

A bottoming 275 kilowatt planar solid oxide fuel cell gas turbine hybrid system control approach has been conceptualized and designed. Based on previously published modeling techniques, a dynamic model is developed that captures the physics sufficient for dynamic simulation of all processes that affect the system with time scales greater than ten milliseconds. The dynamic model was used to make system design improvements to enable the system to operate dynamically over a wide range of power output. The wide range of operation was possible by burning supplementary fuel in the combustor and operating the turbine at variable speed for improved thermal management. The dynamic model was employed to design a control strategy for the system. Analyses of the relative gain array of the system at several operating points gave insight into input/output pairing for decentralized control. Particularly, the analyses indicate that for SOFC/GT hybrid plants that use voltage as a controlled variable it is beneficial to control system power by manipulating fuel cell current and to control fuel cell voltage by manipulating the anode fuel flowrate. To control the stack temperature during transient load changes, a cascade control structure is employed in which a fast inner loop that maintains the GT shaft speed receives its setpoint from a slower outer loop that maintains the stack temperature. Fuel can be added to the combustor to maintain the turbine inlet temperature for the lower operating power conditions. To maintain fuel utilization and to prevent fuel starvation in the fuel cell, fuel is supplied to the fuel cell proportionally to the stack current. In addition, voltage is used as an indicator of varying fuel concentrations allowing the fuel flow to be adjusted accordingly. Using voltage as a sensor is shown to be a potential solution to making SOFC systems robust to varying fuel compositions. The simulation tool proved effective for fuel cell/GT hybrid system control system development. The resulting SOFC/GT system control approach is shown to have transient load-following capability over a wide range of power, ambient temperature, and fuel concentration variations. Copyright © 2006 by ASME.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,202

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

30 Watt metal hydride-air fuel cell system.Francis P. Mcilaspina - 1968 - In Peter Koestenbaum (ed.), Proceedings. [San Jose? Calif.,: [San Jose? Calif.. pp. 22--20.

Analytics

Added to PP
2017-03-24

Downloads
5 (#1,463,568)

6 months
1 (#1,444,594)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Franziska Maria Mueller
Université de Fribourg
Rebecca Roberts
Hampshire College

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references