Mathematical Logic Quarterly 57 (3):323-338 (2011)
Abstract |
Schnorr randomness and computable randomness are natural concepts of random sequences. However van Lambalgen’s Theorem fails for both randomnesses. In this paper we define truth-table Schnorr randomness and truth-table reducible randomness, for which we prove that van Lambalgen's Theorem holds. We also show that the classes of truth-table Schnorr random reals relative to a high set contain reals Turing equivalent to the high set. It follows that each high Schnorr random real is half of a real for which van Lambalgen's Theorem fails. Moreover we establish the coincidence between triviality and lowness notions for truth-table Schnorr randomness. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
|
Keywords | 03D25 03D15 Schnorr randomness truth‐table reducibility MSC (2010) 68Q30 van Lambalgen's Theorem computably randomness |
Categories | (categorize this paper) |
DOI | 10.1002/malq.200910128 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
On Schnorr and Computable Randomness, Martingales, and Machines.Rod Downey, Evan Griffiths & Geoffrey Laforte - 2004 - Mathematical Logic Quarterly 50 (6):613-627.
Kolmogorov–Loveland Randomness and Stochasticity.Wolfgang Merkle, Joseph S. Miller, André Nies, Jan Reimann & Frank Stephan - 2006 - Annals of Pure and Applied Logic 138 (1):183-210.
Schnorr Trivial Sets and Truth-Table Reducibility.Johanna N. Y. Franklin & Frank Stephan - 2010 - Journal of Symbolic Logic 75 (2):501-521.
Schnorr Randomness.Rodney G. Downey & Evan J. Griffiths - 2004 - Journal of Symbolic Logic 69 (2):533 - 554.
View all 8 references / Add more references
Citations of this work BETA
Van Lambalgen's Theorem and High Degrees.Johanna N. Y. Franklin & Frank Stephan - 2011 - Notre Dame Journal of Formal Logic 52 (2):173-185.
Characterizing Lowness for Demuth Randomness.Laurent Bienvenu, Rod Downey, Noam Greenberg, André Nies & Dan Turetsky - 2014 - Journal of Symbolic Logic 79 (2):526-560.
Unified Characterizations of Lowness Properties Via Kolmogorov Complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
Nullifying Randomness and Genericity Using Symmetric Difference.Rutger Kuyper & Joseph S. Miller - 2017 - Annals of Pure and Applied Logic 168 (9):1692-1699.
Computable Randomness and Betting for Computable Probability Spaces.Jason Rute - 2016 - Mathematical Logic Quarterly 62 (4-5):335-366.
Similar books and articles
Subclasses of the Weakly Random Reals.Johanna N. Y. Franklin - 2010 - Notre Dame Journal of Formal Logic 51 (4):417-426.
Van Lambalgen's Theorem and High Degrees.Johanna N. Y. Franklin & Frank Stephan - 2011 - Notre Dame Journal of Formal Logic 52 (2):173-185.
Schnorr Trivial Sets and Truth-Table Reducibility.Johanna N. Y. Franklin & Frank Stephan - 2010 - Journal of Symbolic Logic 75 (2):501-521.
Probabilistic Algorithmic Randomness.Sam Buss & Mia Minnes - 2013 - Journal of Symbolic Logic 78 (2):579-601.
Schnorr Randomness.Rodney G. Downey & Evan J. Griffiths - 2004 - Journal of Symbolic Logic 69 (2):533 - 554.
Hyperimmune-Free Degrees and Schnorr Triviality.Johanna N. Y. Franklin - 2008 - Journal of Symbolic Logic 73 (3):999-1008.
A C.E. Real That Cannot Be SW-Computed by Any Ω Number.George Barmpalias & Andrew E. M. Lewis - 2006 - Notre Dame Journal of Formal Logic 47 (2):197-209.
Schnorr Trivial Reals: A Construction. [REVIEW]Johanna N. Y. Franklin - 2008 - Archive for Mathematical Logic 46 (7-8):665-678.
Lowness for Kurtz Randomness.Noam Greenberg & Joseph S. Miller - 2009 - Journal of Symbolic Logic 74 (2):665-678.
Lowness and $\pi _{2}^{0}$ Nullsets.Rod Downey, Andre Nies, Rebecca Weber & Liang Yu - 2006 - Journal of Symbolic Logic 71 (3):1044 - 1052.
An Extension of van Lambalgen's Theorem to Infinitely Many Relative 1-Random Reals.Kenshi Miyabe - 2010 - Notre Dame Journal of Formal Logic 51 (3):337-349.
Independence, Randomness and the Axiom of Choice.Michiel van Lambalgen - 1992 - Journal of Symbolic Logic 57 (4):1274-1304.
Analytics
Added to PP index
2013-12-01
Total views
48 ( #233,933 of 2,498,786 )
Recent downloads (6 months)
1 ( #421,542 of 2,498,786 )
2013-12-01
Total views
48 ( #233,933 of 2,498,786 )
Recent downloads (6 months)
1 ( #421,542 of 2,498,786 )
How can I increase my downloads?
Downloads