Robustness vs. Control in Distributed Systems

In Marta Bertolaso, Silvia Caianiello & Emanuele Serrelli (eds.), Biological Robustness. Emerging Perspectives from within the Life Sciences. Cham: Springer. pp. 189-205 (2018)
  Copy   BIBTEX

Abstract

Understanding and controlling the behavior of dynamical distributed systems, especially biological ones, represents a challenging task. Such systems, in fact, are characterized by a complex web of interactions among their composing elements or subsystems. A typical pattern observed in these systems is the emergence of complex behaviors, in spite of the local nature of the interaction among elements in close spatial proximity. Yet, we point out that each element is a proper system, with its inputs, its outputs and its internal behavior. Moreover, such elements tend to implement feedback control or regulation strategies, where the outputs of a subsystem A are fed as inputs to another subsystem B and so on until, eventually, A itself is influenced. Such complex feedback loops are understood only by considering, at the same time, low- and high-level perspectives, i.e., by regarding such systems as a collection of systems and as a whole, emerging entity. In particular, dynamical distributed systems show nontrivial robustness properties, which are, from one side, inherent to the each subsystem and, from another, depend on the complex web of interactions. In this chapter, therefore, we aim at characterizing the robustness of dynamical distributed systems by using two coexisting levels of abstraction: first, we discuss and review the main concepts related to the robustness of systems, and the relation between robustness, model and control; then, we decline these concepts in the case of dynamical distributed systems as a whole, highlighting similarities and differences with standard systems. We conclude the chapter with a case study related to the chemotaxis of a colony of E. Coli bacteria. We point out that the very reason of existence of this chapter is to make accessible to a vast and not necessarily technical audience the main concepts related to control and robustness of dynamical systems, both traditional and distributed ones.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,139

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Mechanisms for Robust Cognition.Matthew M. Walsh & Kevin A. Gluck - 2015 - Cognitive Science 39 (6):1131-1171.
The role of agency in distributed cognitive systems.Ronald N. Giere - 2006 - Philosophy of Science 73 (5):710-719.
Prolegomena to a History of Robustness.Silvia Caianiello - 2018 - In Marta Bertolaso, Silvia Caianiello & Emanuele Serrelli (eds.), Biological Robustness. Emerging Perspectives from within the Life Sciences. Cham: Springer. pp. 23-54.
Mechanisms in Dynamically Complex Systems.Meinard Kuhlmann - 2011 - In Phyllis McKay Illari, Federica Russo & Jon Williamson (eds.), Causality in the Sciences. Oxford University Press.
Systems biology and the integration of mechanistic explanation and mathematical explanation.Ingo Brigandt - 2013 - Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):477-492.

Analytics

Added to PP
2020-02-07

Downloads
2 (#1,722,101)

6 months
2 (#1,015,942)

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references