Between Polish and completely Baire

Archive for Mathematical Logic 54 (1-2):231-245 (2015)
  Copy   BIBTEX


All spaces are assumed to be separable and metrizable. Consider the following properties of a space X. X is Polish.For every countable crowded Q⊆X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q \subseteq X}$$\end{document} there exists a crowded Q′⊆Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q'\subseteq Q}$$\end{document} with compact closure.Every closed subspace of X is either scattered or it contains a homeomorphic copy of 2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^\omega}$$\end{document}.Every closed subspace of X is a Baire space. While is the well-known property of being completely Baire, properties and have been recently introduced by Kunen, Medini and Zdomskyy, who named them the Miller property and the Cantor-Bendixson property respectively. It turns out that the implications →→→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \rightarrow \rightarrow \rightarrow }$$\end{document} hold for every space X. Furthermore, it follows from a classical result of Hurewicz that all these implications are equivalences if X is coanalytic. Under the axiom of Projective Determinacy, this equivalence result extends to all projective spaces. We will complete the picture by giving a ZFC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sf ZFC}$$\end{document} counterexample and a consistent definable counterexample of lowest possible complexity to the implication ←\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \leftarrow }$$\end{document} for i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${i = 1, 2, 3}$$\end{document}. For one of these counterexamples we will need a classical theorem of Martin and Solovay, of which we give a new proof, based on a result of Baldwin and Beaudoin. Finally, using a method of Fischer and Friedman, we will investigate how changing the value of the continuum affects the definability of these counterexamples. Along the way, we will show that every uncountable completely Baire space has size continuum.



    Upload a copy of this work     Papers currently archived: 92,873

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Polish group actions, nice topologies, and admissible sets.Barbara Majcher-Iwanow - 2008 - Mathematical Logic Quarterly 54 (6):597-616.
Decomposing baire functions.J. Cichoń, M. Morayne, J. Pawlikowski & S. Solecki - 1991 - Journal of Symbolic Logic 56 (4):1273 - 1283.
Codings of separable compact subsets of the first Baire class.Pandelis Dodos - 2006 - Annals of Pure and Applied Logic 142 (1):425-441.
On completely nonmeasurable unions.Szymon Żeberski - 2007 - Mathematical Logic Quarterly 53 (1):38-42.
Quasi-Polish spaces.Matthew de Brecht - 2013 - Annals of Pure and Applied Logic 164 (3):356-381.
Measurable chromatic numbers.Benjamin D. Miller - 2008 - Journal of Symbolic Logic 73 (4):1139-1157.
Extending Baire property by uncountably many sets.Paweł Kawa & Janusz Pawlikowski - 2010 - Journal of Symbolic Logic 75 (3):896-904.
Some weak forms of the Baire category theorem.Kyriakos Kermedis - 2003 - Mathematical Logic Quarterly 49 (4):369.
A quasi-order on continuous functions.Raphaël Carroy - 2013 - Journal of Symbolic Logic 78 (2):633-648.


Added to PP

13 (#1,060,918)

6 months
7 (#486,337)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Constructing wadge classes.Raphaël Carroy, Andrea Medini & Sandra Müller - 2022 - Bulletin of Symbolic Logic 28 (2):207-257.
Two applications of topology to model theory.Christopher J. Eagle, Clovis Hamel & Franklin D. Tall - 2021 - Annals of Pure and Applied Logic 172 (5):102907.
Zero-dimensional σ-homogeneous spaces.Andrea Medini & Zoltán Vidnyánszky - 2024 - Annals of Pure and Applied Logic 175 (1):103331.

Add more citations

References found in this work

The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
Cardinal characteristics and projective wellorders.Vera Fischer & Sy David Friedman - 2010 - Annals of Pure and Applied Logic 161 (7):916-922.
Solovay-Type Characterizations for Forcing-Algebras.Jörg Brendle & Benedikt Löwe - 1999 - Journal of Symbolic Logic 64 (3):1307-1323.
[Omnibus Review].Gabriel Debs - 2001 - Bulletin of Symbolic Logic 7 (3):385-388.

Add more references