Continuous logic and embeddings of Lebesgue spaces

Archive for Mathematical Logic 60 (1-2):105-119 (2021)

Abstract

We use the compactness theorem of continuous logic to give a new proof that Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r$$\end{document} isometrically embeds into Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} whenever 1≤p≤r≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le p \le r \le 2$$\end{document}. We will also give a proof for the complex case. This will involve a new characterization of complex Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces based on Banach lattices.

Download options

PhilArchive



    Upload a copy of this work     Papers currently archived: 72,856

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2020-05-28

Downloads
1 (#1,560,988)

6 months
1 (#386,040)

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

References found in this work

Add more references

Citations of this work

No citations found.

Add more citations

Similar books and articles

Dynamic Topological S5.Philip Kremer - 2009 - Annals of Pure and Applied Logic 160 (1):96-116.
Dynamic Measure Logic.Tamar Lando - 2012 - Annals of Pure and Applied Logic 163 (12):1719-1737.
Continuous Triangular Norm Based Fuzzy Topology.Dexue Zhang & Gao Zhang - 2019 - Archive for Mathematical Logic 58 (7-8):915-942.
LD-Algebras Beyond I0.Vincenzo Dimonte - 2019 - Notre Dame Journal of Formal Logic 60 (3):395-405.
Dynamic Topological Logic.Philip Kremer & Grigori Mints - 2005 - Annals of Pure and Applied Logic 131 (1-3):133-158.
Dynamic Topological Logic.Philip Kremer & Giorgi Mints - 2005 - Annals of Pure and Applied Logic 131 (1-3):133-158.
Generic Embeddings Associated to an Indestructibly Weakly Compact Cardinal.Gunter Fuchs - 2010 - Annals of Pure and Applied Logic 162 (1):89-105.
On Some Interpretations of Classical Logic.Branislav R. Boričić & B. R. Boričić - 1992 - Mathematical Logic Quarterly 38 (1):409-412.