Abstract
Non-collapse theories of quantum mechanics have the peculiar characteristic that, although their measurements produce definite results, their state vectors remain in a superposition of possible outcomes. David Albert has used this fact to show that the standard uncertainty relations can be violated if self-measurements are made. Bradley Monton, however, has held that Albert has not been careful enough in his treatment of self-measurement and that being more careful (considering mental state supervenience) implies no violation of the relations. In this paper, I will outline both Albert's proposal and Monton's objections. Then, I will show how the uncertainty relations can be violated after all (even after being as careful as Monton). Finally, I will discuss how finding a way around the objections allows us to learn more about what is and what is not possible in non-collapse theories of quantum mechanics.