Prolegomena for a cognitive biology

Abstract

In general, there are two ways to approach cognition. One is to start with the features of the human case and try to generalize to other species. Another is to start with the biological conditions under which natural cognition evolved and currently operates and ask what organisms do such that they might require cognition. A full account of cognition requires both. Cognitive biology, however, requires a biogenic approach. Tight integration with biological knowledge places strong constraints on cognitive explanation. These constraints arise from the fact that cognition evolved in a particular context with very special features. All organisms are complex, self-organizing, dynamical systems that exist far from thermodynamic equilibrium and actively maintain themselves in this statistically improbable state by continuously manufacturing the components of the processes that sustain them. Organisms thus must interact with the world in ways that allow them to actively secure matter and energy. They are also persistence-valuing systems: most organisms have mechanisms for resisting or avoiding perturbations that threaten their integrity. A biogenic approach thus stresses the role of mechanisms that facilitate system persistence, for example, those that integrate information concerning external and internal states of affairs to facilitate adaptive behaviour; differentiate some states of affairs from others; invest different properties of the environment with different degrees of salience; appraise system needs relative to prevailing conditions, the potential for interaction, and whether the current interaction is succeeding ; and reduce the impact of random perturbations on system functioning, of which there are many, potentially lethal sources. These are recognisably cognitive functions. Mounting evidence suggests that even bacteria grapple with problems long familiar to cognitive scientists, including: integrating information from multiple sensory channels to marshal an effective response to fluctuating conditions; making decisions under conditions of uncertainty; communicating with conspecifics and others ; and coordinating collective behaviour to increase the chances of survival. Thus a biogenic approach not only justifies the use of very simple biological models to study cognition, it suggests that this is precisely where we ought to look to ascertain the general logic of the function, as well as the mechanisms that carry it out.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,322

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2010-07-27

Downloads
37 (#419,437)

6 months
7 (#425,192)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Jonathan Opie
University of Adelaide

Citations of this work

Converging Concepts of Evolutionary Epistemology and Cognitive Biology Within a Framework of the Extended Evolutionary Synthesis.Isabella Sarto-Jackson - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (2):297-312.

Add more citations

References found in this work

No references found.

Add more references