Similar systems and dimensionally invariant laws

Philosophy of Science 38 (2):157-169 (1971)
  Copy   BIBTEX

Abstract

Using H. Whitney's algebra of physical quantities and his definition of a similarity transformation, a family of similar systems (R. L. Causey [3] and [4]) is any maximal collection of subsets of a Cartesian product of dimensions for which every pair of subsets is related by a similarity transformation. We show that such families are characterized by dimensionally invariant laws (in Whitney's sense, [10], not Causey's). Dimensional constants play a crucial role in the formulation of such laws. They are represented as a function g, known as a system measure, from the family into a certain Cartesian product of dimensions and having the property gφ =φ g for every similarity φ . The dimensions involved in g are related to the family by means of certain stability groups of similarities. A one-to-one system measure is a proportional representing function, which plays an analogous role in Causey's theory, but not conversely. The present results simplify and clarify those of Causey

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,349

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
126 (#140,507)

6 months
2 (#1,263,261)

Historical graph of downloads
How can I increase my downloads?