Isomorphic and strongly connected components

Archive for Mathematical Logic 54 (1-2):35-48 (2015)
  Copy   BIBTEX

Abstract

We study the partial orderings of the form ⟨P,⊂⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle \mathbb{P}, \subset\rangle}$$\end{document}, where X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} is a binary relational structure with the connectivity components isomorphic to a strongly connected structure Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Y}}$$\end{document} and P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P} }$$\end{document} is the set of substructures of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {X}}$$\end{document} isomorphic to X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document}. We show that, for example, for a countable X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document}, the poset ⟨P,⊂⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle \mathbb {P}, \subset\rangle}$$\end{document} is either isomorphic to a finite power of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P} }$$\end{document} or forcing equivalent to a separative atomless σ-closed poset and, consistently, to P/fin. In particular, this holds for each ultrahomogeneous structure X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} such that X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}}$$\end{document} or Xc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{X}^{c}}$$\end{document} is a disconnected structure and in this case Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Y}}$$\end{document} can be replaced by an ultrahomogeneous connected digraph.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,322

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Maximally embeddable components.Miloš S. Kurilić - 2013 - Archive for Mathematical Logic 52 (7-8):793-808.
Existence of EF-equivalent non-isomorphic models.Chanoch Havlin & Saharon Shelah - 2007 - Mathematical Logic Quarterly 53 (2):111-127.
Isomorphic but not lower base-isomorphic cylindric set algebras.B. Biró & S. Shelah - 1988 - Journal of Symbolic Logic 53 (3):846-853.
Connected components of graphs and reverse mathematics.Jeffry L. Hirst - 1992 - Archive for Mathematical Logic 31 (3):183-192.
Groups of dimension two and three over o-minimal structures.A. Nesin, A. Pillay & V. Razenj - 1991 - Annals of Pure and Applied Logic 53 (3):279-296.
Universal Groups of Effect Spaces.Stanley Gudder - 1999 - Foundations of Physics 29 (3):409-422.
Connected components of definable groups, and o-minimality II.Annalisa Conversano & Anand Pillay - 2015 - Annals of Pure and Applied Logic 166 (7-8):836-849.
Definably connected nonconnected sets.Antongiulio Fornasiero - 2012 - Mathematical Logic Quarterly 58 (1):125-126.
Posets of copies of countable scattered linear orders.Miloš S. Kurilić - 2014 - Annals of Pure and Applied Logic 165 (3):895-912.

Analytics

Added to PP
2015-09-03

Downloads
14 (#956,614)

6 months
2 (#1,244,653)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Different similarities.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (7-8):839-859.

Add more citations

References found in this work

Forcing by non-scattered sets.Miloš S. Kurilić & Stevo Todorčević - 2012 - Annals of Pure and Applied Logic 163 (9):1299-1308.
Posets of copies of countable scattered linear orders.Miloš S. Kurilić - 2014 - Annals of Pure and Applied Logic 165 (3):895-912.
Maximally embeddable components.Miloš S. Kurilić - 2013 - Archive for Mathematical Logic 52 (7-8):793-808.

Add more references