Categorial inference and modal logic
Journal of Logic, Language and Information 7 (4):399-411 (1998)
Abstract
This paper establishes a connection between structure sensitive categorial inference and classical modal logic. The embedding theorems for non-associative Lambek Calculus and the whole class of its weak Sahlqvist extensions demonstrate that various resource sensitive regimes can be modelled within the framework of unimodal temporal logic. On the semantic side, this requires decomposition of the ternary accessibility relation to provide its correlation with standard binary Kripke frames and models.Author's Profile
Reprint years
2004
DOI
10.1023/a:1008322125368
My notes
Similar books and articles
What is an inference rule?Ronald Fagin, Joseph Y. Halpern & Moshe Y. Vardi - 1992 - Journal of Symbolic Logic 57 (3):1018-1045.
Elementary categorial logic, predicates of variable degree, and theory of quantity.Brent Mundy - 1989 - Journal of Philosophical Logic 18 (2):115 - 140.
A faithful representation of non-associative Lambek grammars in abstract categorial grammars.Christian Retoré & Sylvain Salvati - 2010 - Journal of Logic Language and Information 19 (2):185-200.
Multimodal linguistic inference.Michael Moortgat - 1996 - Journal of Logic, Language and Information 5 (3-4):349-385.
Analytics
Added to PP
2009-01-28
Downloads
40 (#293,896)
6 months
1 (#450,425)
2009-01-28
Downloads
40 (#293,896)
6 months
1 (#450,425)
Historical graph of downloads
Author's Profile
Citations of this work
Algorithmic correspondence and canonicity for distributive modal logic.Willem Conradie & Alessandra Palmigiano - 2012 - Annals of Pure and Applied Logic 163 (3):338-376.
From positive PDL to its non-classical extensions.Igor Sedlár & Vít Punčochář - 2019 - Logic Journal of the IGPL 27 (4):522-542.
Simulating polyadic modal logics by monadic ones.George Goguadze, Carla Piazza & Yde Venema - 2003 - Journal of Symbolic Logic 68 (2):419-462.
A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Springer International Publishing. pp. 289-337.
Inter-model connectives and substructural logics.Igor Sedlár - 2014 - In Roberto Ciuni, Heinrich Wansing & Caroline Willkommen (eds.), Recent Trends in Philosophical Logic (Proceedings of Trends in Logic XI). Springer. pp. 195-209.
References found in this work
The Mathematics of Sentence Structure.Joachim Lambek - 1958 - Journal of Symbolic Logic 65 (3):154-170.
Categorial Type Logics.Michael Moortgat - 1997 - In J. van Benthem & A. ter Meulen (eds.), Handbook of Logic and Language. Elsevier.
Mathematical linguistics and proof theory.Wojciech Buszkowski - 1997 - In Benthem & Meulen (eds.), Handbook of Logic and Language. MIT Press. pp. 683--736.
Type Logical Grammar: Categorial Logic of Signs.G. V. Morrill - 1994 - Dordrecht, Netherland: Springer.