Physics of uncertainty, the Gibbs paradox and indistinguishable particles

Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):480-489 (2013)
  Copy   BIBTEX

Abstract

The idea that, in the microscopic world, particles are indistinguishable, interchangeable and without identity has been central in quantum physics. The same idea has been enrolled in statistical thermodynamics even in a classical framework of analysis to make theoretical results agree with experience. In thermodynamics of gases, this hypothesis is associated with several problems, logical and technical. For this case, an alternative theoretical framework is provided, replacing the indistinguishability hypothesis with standard probability and statistics. In this framework, entropy is a probabilistic notion applied to thermodynamic systems and is not extensive per se. Rather, the extensive entropy used in thermodynamics is the difference of two probabilistic entropies. According to this simple view, no paradoxical behaviors, such as the Gibbs paradox, appear. Such a simple probabilistic view within a classical physical framework, in which entropy is none other than uncertainty applicable irrespective of particle size, enables generalization of mathematical descriptions of processes across any type and scale of systems ruled by uncertainty.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Quantum Logical Structures For Identical Particles.Federico Holik, Krause Decio & Gómez Ignacio - 2016 - Cadernos de História E Filosofia da Ciéncia 2 (1):13-58.
Clausius versus Sackur–Tetrode entropies.Thomas Oikonomou & G. Baris Bagci - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (2):63-68.
On the indistinguishability of classical particles.S. Fujita - 1991 - Foundations of Physics 21 (4):439-457.

Analytics

Added to PP
2014-01-23

Downloads
44 (#353,833)

6 months
5 (#638,139)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

A Mathematical Theory of Communication.Claude Elwood Shannon - 1948 - Bell System Technical Journal 27 (April 1924):379–423.
Can the maximum entropy principle be explained as a consistency requirement?Jos Uffink - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (3):223-261.
Information theory and statistical mechanics.Edwin T. Jaynes - 1957 - Physical Review 106:620–630.

Add more references