Abstract
We present a version of Herbelin’s image-calculus in the call-by-name setting to study the precise correspondence between normalization and cut-elimination in classical logic. Our translation of λμ-terms into a set of terms in the calculus does not involve any administrative redexes, in particular η-expansion on μ-abstraction. The isomorphism preserves β,μ-reduction, which is simulated by a local-step cut-elimination procedure in the typed case, where the reduction system strictly follows the “ cut=redex” paradigm. We show that the underlying untyped calculus is confluent and enjoys the PSN property for the isomorphic image of λμ-calculus, which in turn yields a confluent and strongly normalizing local-step cut-elimination procedure for classical logic