Philosophiques 38 (1):219-239 (2011)

Abstract
Kevin Mulligan a introduit la distinction entre les descriptions épaisses et minces dans la philosophie des relations. Cette distinction lui a permis d’affirmer les thèses suivantes : toutes les relations sont « minces » et internes, et aucune n’est « épaisse » et externe. J’accepte et j’utilise la distinction de Mulligan entre mince et épais afin de soutenir que ce ne sont pas toutes les relations internes qui sont minces. Il existe également des relations internes épaisses, et celles-ci abondent en physique mathématique. Je soutiens en outre qu’il peut y avoir des relations externes minces. Cependant, en introduisant une distinction entre relations fortement et faiblement internes, je suis d’accord pour affirmer avec Mulligan que toutes les relations fortement internes sont des relations minces.Kevin Mulligan has brought the distinction between thick and thin descriptions into the philosophy of relations, and with its help he has put forward the theses that all relations are “thin” and internal, and that none is “thick” and external. Accepting and using Mulligan’s thin — thick distinction, I argue that not all internal relations are thin. There are thick internal relations, too ; and they abound in mathematical physics. Also, I claim that there might be thin external relations. However, introducing a distinction between strongly and weakly internal relations, I agree with Mulligan that all strongly internal relations are thin relations
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.7202/1005724ar
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Translate to english
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 70,039
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

The Principles of Mathematics.Bertrand Russell - 1903 - Cambridge, England: Allen & Unwin.
Ontological Dependence.Fabrice Correia - 2008 - Philosophy Compass 3 (5):1013-1032.

View all 13 references / Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Analytics

Added to PP index
2013-11-01

Total views
33 ( #345,440 of 2,505,269 )

Recent downloads (6 months)
1 ( #416,705 of 2,505,269 )

How can I increase my downloads?

Downloads

My notes