# Hierarchies of Forcing Axioms II

Journal of Symbolic Logic 73 (2):522 - 542 (2008)

# Abstract

A $\Sigma _{1}^{2}$ truth for λ is a pair 〈Q, ψ〉 so that Q ⊆ Hλ, ψ is a first order formula with one free variable, and there exists B ⊆ Hλ+ such that (Hλ+; ε, B) $(H_{\lambda +};\in ,B)\vDash \psi [Q]$ . A cardinal λ is $\Sigma _{1}^{2}$ indescribable just in case that for every $\Sigma _{1}^{2}$ truth 〈Q, ψ〉 for λ, there exists $\overline{\lambda}<\lambda$ so that $\overline{\lambda}$ is a cardinal and $\langle Q\cap H_{\overline{\lambda}},\psi \rangle$ is a $\Sigma _{1}^{2}$ truth for $\overline{\lambda}$ . More generally, an interval of cardinals [κ, λ] with κ ≤ λ is $\Sigma _{1}^{2}$ indescribable if for every $\Sigma _{1}^{2}$ truth 〈Q, ψ〉 for λ, there exists $??\leq \overline{\lambda}<\kappa,??\subseteq H_{\overline{\lambda}}$ , and π: $H_{\overline{\lambda}}\rightarrow H_{\lambda}$ so that $??$ is a cardinal, $\langle ??,\psi \rangle$ is a $\Sigma _{1}^{2}$ truth for $??$ , and π is elementary from $(H_{\overline{\lambda}};\in,??,??)$ with $\pi \,|\,??={\rm id}$ . We prove that the restriction of the proper forcing axiom to c-linked posets requires a $\Sigma _{1}^{2}$ indescribable cardinal in L, and that the restriction of the proper forcing axiom to c⁺-linked posets, in a proper forcing extension of a fine structural model, requires a $\Sigma _{1}^{2}$ indescribable 1-gap [κ, κ⁺]. These results show that the respective forward directions obtained in " Hierarchies of Forcing Axioms I" by Neeman and Schimmerling are optimal

## PhilArchive

Upload a copy of this work     Papers currently archived: 91,164

Setup an account with your affiliations in order to access resources via your University's proxy server

# Similar books and articles

Hierarchies of forcing axioms I.Itay Neeman & Ernest Schimmerling - 2008 - Journal of Symbolic Logic 73 (1):343-362.
Projective Well-Orderings and Bounded Forcing Axioms.Andrés Eduardo Caicedo - 2005 - Journal of Symbolic Logic 70 (2):557 - 572.
A maximal bounded forcing axiom.David Asperó - 2002 - Journal of Symbolic Logic 67 (1):130-142.
Simple forcing notions and forcing axioms.Andrzej Rosłanowski & Saharon Shelah - 1997 - Journal of Symbolic Logic 62 (4):1297-1314.
Proper forcing and l(ℝ).Itay Neeman & Jindřich Zapletal - 2001 - Journal of Symbolic Logic 66 (2):801-810.
PFA and Ideals on $\omega_{2}$ Whose Associated Forcings Are Proper.Sean Cox - 2012 - Notre Dame Journal of Formal Logic 53 (3):397-412.
Forcing Indestructibility of Set-Theoretic Axioms.Bernhard König - 2007 - Journal of Symbolic Logic 72 (1):349 - 360.
Small forcing makes any cardinal superdestructible.Joel David Hamkins - 1998 - Journal of Symbolic Logic 63 (1):51-58.

2010-08-24

25 (#592,433)

6 months
7 (#328,545)