Abstract
We discuss a well-known puzzle about the lexicalization of logical operators in natural language, in particular connectives and quantifiers. Of the many logically possible operators, only few appear in the lexicon of natural languages: the connectives in English, for example, are conjunction _and_, disjunction _or_, and negated disjunction _nor_; the lexical quantifiers are _all, some_ and _no_. The logically possible nand (negated conjunction) and Nall (negated universal) are not expressed by lexical entries in English, nor in any natural language. Moreover, the lexicalized operators are all upward or downward monotone, an observation known as the Monotonicity Universal. We propose a logical explanation of lexical gaps and of the Monotonicity Universal, based on the dynamic behaviour of connectives and quantifiers. We define update potentials for logical operators as procedures to modify the context, under the assumption that an update by \( \phi \) depends on the logical form of \( \phi \) and on the speech act performed: assertion or rejection. We conjecture that the adequacy of update potentials determines the limits of lexicalizability for logical operators in natural language. Finally, we show that on this framework the Monotonicity Universal follows from the logical properties of the updates that correspond to each operator.