Abstract |
The conceptual incompatibility between General Relativity and Quantum Mechanics is generally seen as a sufficient motivation for the development of a theory of Quantum Gravity. If - so a typical argumentation - Quantum Mechanics gives a universally valid basis for the description of the dynamical behavior of all natural systems, then the gravitational field should have quantum properties, like all other fundamental interaction fields. And, if General Relativity can be seen as an adequate description of the classical aspects of gravity and spacetime - and their mutual relation -, this leads, together with the rather convincing arguments against semi-classical theories of gravity, to a strategy which takes a quantization of General Relativity as the natural avenue to a theory of Quantum Gravity. And, because in General Relativity the gravitational field is represented by the spacetime metric, a quantization of the gravitational field would in some sense correspond to a quantization of geometry. Spacetime would have quantum properties. But, this direct quantization strategy to Quantum Gravity will only be successful, if gravity is indeed a fundamental interaction. Only if it is a fundamental interaction, the given argumentation is valid, and the gravitational field, as well as spacetime, should have quantum properties. - What, if gravity is instead an intrinsically classical phenomenon? Then, if Quantum Mechanics is nevertheless fundamentally valid, gravity can not be a fundamental interaction; a classical and at the same time fundamental gravity is excluded by the arguments against semi-classical theories of gravity. An intrinsically classical gravity in a quantum world would have to be an emergent, induced or residual, macroscopic effect, caused by a quantum substrate dominated by other interactions, not by gravity. Then, the gravitational field (as well as spacetime) would not have any quantum properties. And then, a quantization of gravity (i.e. of General Relativity) would lead to artifacts without any relation to nature. The serious problems of all approaches to Quantum Gravity that start from a direct quantization of General Relativity (e.g. non-perturbative canonical quantization approaches like Loop Quantum Gravity) or try to capture the quantum properties of gravity in form of a 'graviton' dynamics (e.g. Covariant Quantization, String Theory) - together with the, meanwhile, rich spectrum of (more or less advanced) theoretical approaches to an emergent gravity and/or spacetime - make this latter option more and more interesting for the development of a theory of Quantum Gravity. The most advanced emergent gravity (and spacetime) scenarios are of an information-theoretical, quantum-computational type. A paradigmatic model for the emergence of gravity and spacetime comes from the Pregeometric Quantum Causal Histories approach.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
World Enough and Space‐Time: Absolute Versus Relational Theories of Space and Time.Robert Toretti & John Earman - 1989 - Philosophical Review 101 (3):723.
Thoroughly Modern Mctaggart: Or, What Mctaggart Would Have Said If He Had Read the General Theory of Relativity.John Earman - 2002 - Philosophers' Imprint 2:1-28.
The Hole Argument.John D. Norton - 1988 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1988:56 - 64.
View all 24 references / Add more references
Citations of this work BETA
Philosophy of Science in Germany, 1992–2012: Survey-Based Overview and Quantitative Analysis.Matthias Unterhuber, Alexander Gebharter & Gerhard Schurz - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (1):71-160.
The Deep Metaphysics of Quantum Gravity: The Seventeenth Century Legacy and an Alternative Ontology Beyond Substantivalism and Relationism.Edward Slowik - 2013 - Studies in the History and Philosophy of Modern Physics 44 (4):490-499.
A Pre-History of Quantum Gravity: The Seventeenth Century Legacy and the Deep Metaphysics of Space Beyond Substantivalism and Relationism.Edward Slowik - unknown
Similar books and articles
Spacetime and the Philosophical Challenge of Quantum Gravity.Jeremy Butterfield & Chris Isham - 2000 - In Physics Meets Philosophy at the Panck Scale. Cambridge University Press.
Spacetime or Quantum Particles: The Ontology of Quantum Gravity?Peter James Riggs - 1996 - In Peter J. Riggs (ed.), Natural Kinds, Laws of Nature and Scientific Methodology. Kluwer Academic Publishers. pp. 211--226.
Pre-Socratic Quantum Gravity.Belot Gordon & Earman John - 2001 - In Craig Callender & Nick Huggett (eds.), Physics Meets Philosophy at the Planck Scale. Cambridge University Press. pp. 213--55.
To Quantize or Not to Quantize: Fact and Folklore in Quantum Gravity.Christian Wüthrich - 2005 - Philosophy of Science 72 (5):777-788.
Quantum Concepts in Space and Time.Roger Penrose & C. J. Isham (eds.) - 1986 - New York ;Oxford University Press.
Analytics
Added to PP index
2009-02-03
Total views
98 ( #117,727 of 2,498,294 )
Recent downloads (6 months)
3 ( #212,099 of 2,498,294 )
2009-02-03
Total views
98 ( #117,727 of 2,498,294 )
Recent downloads (6 months)
3 ( #212,099 of 2,498,294 )
How can I increase my downloads?
Downloads