A separable convolutional neural network-based fast recognition method for AR-P300

Frontiers in Human Neuroscience 16:986928 (2022)
  Copy   BIBTEX

Abstract

Augmented reality-based brain–computer interface (AR–BCI) has a low signal-to-noise ratio (SNR) and high real-time requirements. Classical machine learning algorithms that improve the recognition accuracy through multiple averaging significantly affect the information transfer rate (ITR) of the AR–SSVEP system. In this study, a fast recognition method based on a separable convolutional neural network (SepCNN) was developed for an AR-based P300 component (AR–P300). SepCNN achieved single extraction of AR–P300 features and improved the recognition speed. A nine-target AR–P300 single-stimulus paradigm was designed to be administered with AR holographic glasses to verify the effectiveness of SepCNN. Compared with four classical algorithms, SepCNN significantly improved the average target recognition accuracy (81.1%) and information transmission rate (57.90 bits/min) of AR–P300 single extraction. SepCNN with single extraction also attained better results than classical algorithms with multiple averaging.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,349

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Structural-parametric synthesis of deep learning neural networks.Sineglazov V. M. & Chumachenko O. I. - 2020 - Artificial Intelligence Scientific Journal 25 (4):42-51.

Analytics

Added to PP
2022-10-21

Downloads
7 (#1,356,784)

6 months
5 (#629,136)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references