Group Abnormal Behaviour Detection Algorithm Based on Global Optical Flow

Complexity 2021:1-12 (2021)
  Copy   BIBTEX

Abstract

Abnormal behaviour detection algorithm needs to conduct behaviour analysis on the basis of continuous video inclination tracking, and the robustness of the algorithm is reduced for the occlusion of moving targets, the occlusion of the environment, and the movement of targets with the same colour. For this reason, the optical flow information between RGB images and video frames is used as the input of the network in view of group behaviour. Then, the direction, velocity, acceleration, and energy of the crowd were weighted and fused into a global optical flow descriptor. At the same time, the crowd trajectory map is extracted from the original image of a single frame. Following, in order to realize the detection of large displacement moving target and solve the problem that the traditional optical flow algorithm is only suitable for the detection of displacement moving target, a video abnormal behaviour detection algorithm based on the double-flow convolutional neural network is proposed. The network uses two network branches to learn spatial dimension information and temporal dimension information, respectively, and uses short- and long-time neural network to model the dependency relationship between long-time video frames, so as to obtain the final behaviour classification results. Simulation test results show that the proposed method can achieve good recognition effect on multiple datasets, and the performance of abnormal behaviour detection can be significantly improved by using interframe motion information.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-05-06

Downloads
11 (#1,110,001)

6 months
9 (#290,637)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Ying Liu
University of Glasgow

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references