Inductive Skepticism and the Probability Calculus I: Popper and Earman on the Probability of Laws

Philosophy of Science 64 (1):113-130 (1997)
  Copy   BIBTEX


1. Introduction. Attempts to utilize the probability calculus to prove or disprove various inductive or inductive skeptical theses are, I believe, highly problematic. Inductivism and inductive skepticism are substantive philosophical positions that do not allow of merely formal proofs or disproofs. Often the problems with particular alleged formal proofs of inductive or inductive sceptical theses turn on subtle technical considerations. In the following I highlight such considerations in pointing out the flaws of two proofs, one an alleged proof of an inductive sceptical conclusion due to Karl Popper, the other an alleged proof of an inductivist thesis originally due to Harold Jeffreys and later advocated by John Earman. Surprisingly, in examining Popper's argument it is shown that certain apparently weak premises, often embraced by both inductivists and deductivists, lend themselves to inductive conclusions. However it is argued that those premises are still philosophically substantive and not amenable to a purely formal demonstration. The lesson to be learnt here is twofold. First, we need to be very careful in determining which formal theses entail, and which are entailed by, inductive skepticism and inductivism. Second, we need to take great care in laying out and examining the assumptions presumed in formal arguments directed for and against such formal theses. In a follow up article I will consider various attempts by David Stove and Karl Popper and David Miller to identify the exact content of inductive skepticism and propose a new identification based on the theory of content developed in Gemes 1994. Finally I will compare this new version with that proposed recently in Alberto Mura 1990.



    Upload a copy of this work     Papers currently archived: 91,322

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Non-inductive explication of two inductive intuitions.Theo A. F. Kuipers - 1983 - British Journal for the Philosophy of Science 34 (3):209-223.
A brand new type of inductive logic: Reply to Diderik Batens.Theo A. F. Kuipers - 2005 - Poznan Studies in the Philosophy of the Sciences and the Humanities 83 (1):248-252.
Probability, logic, and probability logic.Alan Hójek - 2001 - In Lou Goble (ed.), The Blackwell Guide to Philosophical Logic. Oxford, UK: Blackwell. pp. 362--384.
Bayes's Theorem.E. Eells - 2008 - Gogoa 8 (1):138.


Added to PP

19 (#775,535)

6 months
2 (#1,263,261)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Ken Gemes
Birkbeck College

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references