Abstract
For sentences $\phi$ of $L_{\omega_{1},\omega}$, we investigate the question of absoluteness of $\phi$ having models in uncountable cardinalities. We first observe that having a model in $\aleph_{1}$ is an absolute property, but having a model in $\aleph_{2}$ is not as it may depend on the validity of the continuum hypothesis. We then consider the generalized continuum hypothesis context and provide sentences for any $\alpha\in\omega_{1}\setminus\{0,1,\omega\}$ for which the existence of a model in $\aleph_{\alpha}$ is nonabsolute . Finally, we present a complete sentence for which model existence in $\aleph_{3}$ is nonabsolute