Abstract
The model-checking problem for a logic L on a class C of structures asks whether a given L-sentence holds in a given structure in C. In this paper, we give super-exponential lower bounds for fixed-parameter tractable model-checking problems for first-order and monadic second-order logic. We show that unless PTIME=NP, the model-checking problem for monadic second-order logic on finite words is not solvable in time f·p, for any elementary function f and any polynomial p. Here k denotes the size of the input sentence and n the size of the input word. We establish a number of similar lower bounds for the model-checking problem for first-order logic, for example, on the class of all trees