Abstract
In this paper we treat metasequents—objects which stand to sequents as sequents stand to formulas—as first class logical citizens. To this end we provide a metasequent calculus, a sequent calculus which allows us to directly manipulate metasequents. We show that the various metasequent calculi we consider are sound and complete w.r.t. appropriate classes of tetravaluations where validity is understood locally. Finally we use our metasequent calculus to give direct syntactic proofs of various collapse results, closing a problem left open in French (Ergo, 3(5), 113–131 2016).