Poincaré's philosophy of mathematics

Dissertation, St. Andrews (1986)
  Copy   BIBTEX


The primary concern of this thesis is to investigate the explicit philosophy of mathematics in the work of Henri Poincare. In particular, I argue that there is a well-founded doctrine which grounds both Poincare's negative thesis, which is based on constructivist sentiments, and his positive thesis, via which he retains a classical conception of the mathematical continuum. The doctrine which does so is one which is founded on the Kantian theory of synthetic a priori intuition. I begin, therefore, by outlining Kant's theory of the synthetic a priori, especially as it applies to mathematics. Then, in the main body of the thesis, I explain how the various central aspects of Poincare's philosophy of mathematics - e.g. his theory of induction; his theory of the continuum; his views on impredicativiti his theory of meaning - must, in general, be seen as an adaptation of Kant's position. My conclusion is that not only is there a well-founded philosophical core to Poincare's philosophy, but also that such a core provides a viable alternative in contemporary debates in the philosophy of mathematics. That is, Poincare's theory, which is secured by his doctrine of a priori intuitions, and which describes a position in between the two extremes of an "anti-realist" strict constructivism and a "realist" axiomatic set theory, may indeed be true.



    Upload a copy of this work     Papers currently archived: 93,098

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles


Added to PP

29 (#569,467)

6 months
3 (#1,046,015)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Janet Folina
Macalester College

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references