Abstract
It is argued that the preservation of truth by an inference relation is of little interest when premiss sets are contradictory. The notion of a level of coherence is introduced and the utility of modal logics in the semantic representation of sets of higher coherence levels is noted. It is shown that this representative role cannot be transferred to first order logic via frame theory since the modal formulae expressing coherence level restrictions are not first order definable. Finally, an inference relation, calledyielding, is introduced which is intermediate between the coherence preservingforcing relation introduced elsewhere by the authors and the coherence destroying, inference relation of classical logic.