Equivalents for a Quasivariety to be Generated by a Single Structure

Studia Logica 91 (1):113-123 (2009)
  Copy   BIBTEX


We present some equivalent conditions for a quasivariety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}$$\end{document} of structures to be generated by a single structure. The first such condition, called the embedding property was found by A.I. Mal′tsev in [6]. It says that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf A}, {\bf B} \in \mathcal {K}}$$\end{document} are nontrivial, then there exists \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf C} \in \mathcal{K}}$$\end{document} such that A and B are embeddable into C. One of our equivalent conditions states that the set of quasi-identities valid in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}}$$\end{document} is closed under a certain Gentzen type rule which is due to J. Łoś and R. Suszko [5].



    Upload a copy of this work     Papers currently archived: 92,261

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Subquasivarieties of implicative locally-finite quasivarieties.Alexej P. Pynko - 2010 - Mathematical Logic Quarterly 56 (6):643-658.


Added to PP

52 (#308,060)

6 months
6 (#530,265)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

References found in this work

Algebraizable Logics.W. J. Blok & Don Pigozzi - 2022 - Advanced Reasoning Forum.
Remarks on Sentential Logics.R. Suszko - 1975 - Journal of Symbolic Logic 40 (4):603-604.

Add more references