On the existence and the role of chaotic processes in the nervous system

Acta Biotheoretica 40 (2-3):113-119 (1992)
  Copy   BIBTEX

Abstract

Chaos theory is a rapidly growing field. As a technical term, chaos refers to deterministic but unpredictable processes being sensitively dependent upon initial conditions. Neurobiological models and experimental results are very complicated and some research groups have tried to pursue the neuronal chaos. Babloyantz's group has studied the fractal dimension (d) of electroencephalograms (EEG) in various physiological and pathological states. From deep sleep (d=4) to full awakening (d>8), a hierarchy of strange attractors paralles the hierarchy of states of consciousness. In epilepsy (petit mal), despite the turbulent aspect of a seizure, the attractor dimension was near to 2. In Creutzfeld-Jacob disease, the regular EEG activity corresponded to an attractor dimension less than the one measured in deep sleep. Is it healthy to be chaotic? An active desynchronisation could be favourable to a physiological system. Rapp's group reported variations of fractal dimension according to particular tasks. During a mental arithmetic task, this dimension increased. In another task, a P300 fractal index decreased when a target was identified. It is clear that the EEG is not representing noise. Its underlying dynamics depends on only a few degrees of freedom despite yet it is difficult to compute accurately the relevant parameters.What is the cognitive role of such a chaotic dynamics? Freeman has studied the olfactory bulb in rabbits and rats for 15 years. Multi-electrode recordings of a few mm2 showed a chaotic hierarchy from deep anaesthesia to alert state. When an animal identified a previously learned odour, the fractal dimension of the dynamics dropped off (near limit cycles). The chaotic activity corresponding to an alert-and-waiting state seems to be a field of all possibilities and a focused activity corresponds to a reduction of the attractor in state space. For a couple of years, Freeman has developed a model of the olfactory bulb-cortex system. The behaviour of the simple model without learning was quite similar to the real behaviour and a model with learning is developed.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,164

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
21 (#689,095)

6 months
1 (#1,428,112)

Historical graph of downloads
How can I increase my downloads?