Problems and paradigms: Fine tuning of DNA repair in transcribed genes: Mechanisms, prevalence and consequences

Bioessays 15 (3):209-216 (1993)
  Copy   BIBTEX

Abstract

Cells fine‐tune their DNA repair, selecting some regions of the genome in preference to others. In the paradigm case, excision of UV‐induced pyrimidine dimers in mammalian cells, repair is concentrated in transcribed genes, especially in the transcribed strand. This is due both to chromatin structure being looser in transcribing domains, allowing more rapid repair, and to repair enzymes being coupled to RNA polymerases stalled at damage sites; possibly other factors are also involved. Some repair‐defective diseases may involve repair‐transcription coupling: three candidate genes have been suggested.However, preferential excision of pyrimidine dimers is not uniformly linked to transcription. In mammals it varies with species, and with cell differentiation. In Drosophila embryo cells it is absent, and in yeast, the determining factor is nucleosome stability rather than transcription.Repair of other damage departs further from the paradigm, even in some UV‐mimetic lesions. No selectivity is known for repair of the very frequent minor forms of base damage. And the most interesting consequence of selective repair, selective mutagenesis, normally occurs for UV‐induced, but not for spontaneous mutations. The temptation to extrapolate from mammalian UV repair should be resisted.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,139

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2013-11-23

Downloads
7 (#1,281,834)

6 months
1 (#1,346,405)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Ryan Anderson
Fanshawe College of Applied Arts and Technology

References found in this work

No references found.

Add more references