Co-immune subspaces and complementation in V∞

Journal of Symbolic Logic 49 (2):528 - 538 (1984)
  Copy   BIBTEX


We examine the multiplicity of complementation amongst subspaces of V ∞ . A subspace V is a complement of a subspace W if V ∩ W = {0} and (V ∪ W) * = V ∞ . A subspace is called fully co-r.e. if it is generated by a co-r.e. subset of a recursive basis of V ∞ . We observe that every r.e. subspace has a fully co-r.e. complement. Theorem. If S is any fully co-r.e. subspace then S has a decidable complement. We give an analysis of other types of complements S may have. For example, if S is fully co-r.e. and nonrecursive, then S has a (nonrecursive) r.e. nowhere simple complement. We impose the condition of immunity upon our subspaces. Theorem. Suppose V is fully co-r.e. Then V is immune iff there exist M 1 , M 2 ∈ L(V ∞ ), with M 1 supermaximal and M 2 k-thin, such that $M_1 \oplus V = M_2 \oplus V = V_\infty$ . Corollary. Suppose V is any r.e. subspace with a fully co-r.e. immune complement W (e.g., V is maximal or V is h-immune). Then there exist an r.e. supermaximal subspace M and a decidable subspace D such that $V \oplus W = M \oplus W = D \oplus W = V_\infty$ . We indicate how one may obtain many further results of this type. Finally we examine a generalization of the concepts of immunity and soundness. A subspace V of V ∞ is nowhere sound if (i) for all Q ∈ L(V ∞ ) if $Q \supset V$ then Q = V ∞ , (ii) V is immune and (iii) every complement of V is immune. We analyse the existence (and ramifications of the existence) of nowhere sound spaces



    Upload a copy of this work     Papers currently archived: 94,726

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Decidable subspaces and recursively enumerable subspaces.C. J. Ash & R. G. Downey - 1984 - Journal of Symbolic Logic 49 (4):1137-1145.
On speedable and levelable vector spaces.Frank A. Bäuerle & Jeffrey B. Remmel - 1994 - Annals of Pure and Applied Logic 67 (1-3):61-112.
Recursive properties of relations on models.Geoffrey R. Hird - 1993 - Annals of Pure and Applied Logic 63 (3):241-269.
Simple and hyperhypersimple vector spaces.Allen Retzlaff - 1978 - Journal of Symbolic Logic 43 (2):260-269.
There is no plus-capping degree.Rodney G. Downey & Steffen Lempp - 1994 - Archive for Mathematical Logic 33 (2):109-119.
Strongly and co-strongly minimal abelian structures.Ehud Hrushovski & James Loveys - 2010 - Journal of Symbolic Logic 75 (2):442-458.
Isols and maximal intersecting classes.Jacob C. E. Dekker - 1993 - Mathematical Logic Quarterly 39 (1):67-78.
An Almost Deep Degree.Peter Cholak, Marcia Groszek & Theodore Slaman - 2001 - Journal of Symbolic Logic 66 (2):881-901.
An almost deep degree.Peter Cholak, Marcia Groszek & Theodore Slaman - 2001 - Journal of Symbolic Logic 66 (2):881-901.


Added to PP

65 (#247,038)

6 months
14 (#256,467)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Recursion theory and ordered groups.R. G. Downey & Stuart A. Kurtz - 1986 - Annals of Pure and Applied Logic 32:137-151.
Classifications of degree classes associated with r.e. subspaces.R. G. Downey & J. B. Remmel - 1989 - Annals of Pure and Applied Logic 42 (2):105-124.
Maximal theories.R. G. Downey - 1987 - Annals of Pure and Applied Logic 33 (C):245-282.
Sound, totally sound, and unsound recursive equivalence types.R. G. Downey - 1986 - Annals of Pure and Applied Logic 31:1-20.
A Note on Decompositions of Recursively Enumerable Subspaces.R. G. Downey - 1984 - Mathematical Logic Quarterly 30 (30):465-470.

View all 6 citations / Add more citations

References found in this work

The degrees of bi‐immune sets.Carl G. Jockusch - 1969 - Mathematical Logic Quarterly 15 (7‐12):135-140.
The degrees of bi-immune sets.Carl G. Jockusch - 1969 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 15 (7-12):135-140.
On a question of A. Retzlaff.Rod Downey - 1983 - Mathematical Logic Quarterly 29 (6):379-384.
Recursively enumerable vector spaces.G. Metakides - 1977 - Annals of Mathematical Logic 11 (2):147.

Add more references