Abstract
Abstract Einstein intended the general theory of relativity to be a generalization of the relativity of motion and, therefore, a radical departure from previous spacetime theories. It has since become clear, however, that this intention was not fulfilled. I try to explain Einstein's misunderstanding on this point as a misunderstanding of the role that spacetime plays in physics. According to Einstein, earlier spacetime theories introduced spacetime as the unobservable cause of observable relative motions and, in particular, as the cause of inertial effects of ?absolute? motion. I use a comparative analysis of Einstein and Newton to show that spacetime is not introduced as an explanation of observable effects, but rather is defined through those effects in arguments like Newton's ?water bucket? argument and Einstein's argument for special relativity. I then argue that to claim that a spacetime theory is true, or to claim that a spacetime structure is ?real?, is not to claim that a theoretical object explains the observable. Rather, it is to claim that the fundamental definitions that link spacetime structure to physical phenomena are empirically sound, i.e. that they can be successfully applied empirically. This leads to a new and clearer view of the empirical content of spacetime theories and of the meaning of ?realism? about spacetime