The Isochronal Fibration: Characterization and Implication in Biology

Acta Biotheoretica 58 (2-3):121-142 (2010)
  Copy   BIBTEX

Abstract

Limit cycles, because they are constituted of a periodic succession of states (discrete or continuous) constitute a good manner to store information. From any points of the state space reached after a perturbation or stimulation of the cognitive system storing this information, one can aim to join through a more or less long return trajectory a precise neighbourhood of the asymptotic trajectory at a specific moment (or a specific place) on the limit cycle, i.e. where the information of interest stands. We propose that the isochronal fibration, initially imagined and described by A. T. Winfree may be an excellent way to connect directly those two locations. Each isochron is indeed the set of points in temporal phase with one single point of the attractor. The characterisation of the isochronal fibration of various dynamical systems is not easy and until now has principally only been done numerically but not analytically. By integrating the homogeneous solutions of the dynamical system we can solve this fibration in the case of the well known anharmonic pendulum. Other isochronal fibration on classical examples such as the van der Pol system and the non-symmetrical PFK limit cycle are obtained numerically and we also provide the first numerical study on 3-dimentional systems like the anharmonic pendulum with a linear relaxation on its third variable and the Lorenz attractor. The empirical approach seems us useful for dealing with the isochronal fibration which could constitute a powerful tool for understanding and controlling the dynamics of biological or biological-inspired systems

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2010-07-31

Downloads
29 (#536,973)

6 months
3 (#992,474)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references