What algorithms could not be


This dissertation addresses a variety of foundational issues pertaining to the notion of algorithm employed in mathematics and computer science. In these settings, an algorithm is taken to be an effective mathematical procedure for solving a previously stated mathematical problem. Procedures of this sort comprise the notional subject matter of the subfield of computer science known as algorithmic analysis. In this context, algorithms are referred to via proper names of which computational properties are directly predicated )). Moreover, many formal results are traditionally stated by explicitly quantifying over algorithms. These observations motivate the view that algorithms are themselves abstract mathematical objects -- a view I refer to as algorithmic realism. The status of this view is clearly related to that of Church's Thesis -- i.e. the claim that a function is computable by an algorithm just in case it is partial recursive. But whereas Church's Thesis is widely accepted on the basis of several well-known mathematical analyses of algorithmic computability, there is presently no consensus on how we can uniformly identify individual algorithms with mathematical objects. In the first chapter of this work, I attempt to illustrate the theoretical significance of algorithmic realism. I suggest that this view is not only of foundational significance to computer science, but also worth highlighting due to the role algorithms play in the fixation of mathematical knowledge and their relationship to intensional entities such as propositions and properties. Chapter Two presents a formal framework for reducing computational discourse to mathematical discourse modeled on contemporary discussion of mathematical nominalism. Chapter Three is centered on a case study intended to illustrate the technical exigencies involved with defending algorithmic realism. Chapter Four explores various ways in which algorithms might be identified with models of computation. And finally, Chapter Five argues that no such identification can uniformly satisfy all statements of algorithmic identity and non-identity affirmed by computational practice. I suggest that the technical crux of algorithmic realism lies in the necessity of reducing recursive specifications of algorithms to iterative models of computation in a manner which preserves algorithmic identity.



    Upload a copy of this work     Papers currently archived: 92,100

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles


Added to PP

35 (#457,880)

6 months
8 (#365,731)

Historical graph of downloads
How can I increase my downloads?

References found in this work

The foundations of arithmetic: a logico-mathematical enquiry into the concept of number.Gottlob Frege - 1959 - Evanston, Ill.: Northwestern University Press. Edited by J. L. Austin.
Ueber Sinn und Bedeutung (Summary).Gottlob Frege - 1892 - Philosophical Review 1 (5):574-575.
What is a theory of meaning?Michael A. E. Dummett - 1975 - In Samuel Guttenplan (ed.), Mind and Language. Oxford University Press.

View all 18 references / Add more references