Limit computable integer parts

Archive for Mathematical Logic 50 (7-8):681-695 (2011)
  Copy   BIBTEX

Abstract

Let R be a real closed field. An integer part I for R is a discretely ordered subring such that for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${r \in R}$$\end{document}, there exists an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${i \in I}$$\end{document} so that i ≤ r < i + 1. Mourgues and Ressayre (J Symb Logic 58:641–647, 1993) showed that every real closed field has an integer part. The procedure of Mourgues and Ressayre appears to be quite complicated. We would like to know whether there is a simple procedure, yielding an integer part that is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta^0_2(R)}$$\end{document} —limit computable relative to R. We show that there is a maximal Z-ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I \subseteq R}$$\end{document} which is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta^0_2(R)}$$\end{document}. However, this I may not be an integer part for R. By a result of Wilkie (Logic Colloquium ’77), any Z-ring can be extended to an integer part for some real closed field. Using Wilkie’s ideas, we produce a real closed field R with a Z-ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I \subseteq R}$$\end{document} such that I does not extend to an integer part for R. For a computable real closed field, we do not know whether there must be an integer part in the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta^0_2}$$\end{document}. We know that certain subclasses of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta^0_2}$$\end{document} are not sufficient. We show that for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \in \omega}$$\end{document}, there is a computable real closed field with no n-c.e. integer part. In fact, there is a computable real closed field with no n-c.e. integer part for any n.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,219

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Uncomputably Noisy Ergodic Limits.Jeremy Avigad - 2012 - Notre Dame Journal of Formal Logic 53 (3):347-350.
Computable Embeddings and Strongly Minimal Theories.J. Chisholm, J. F. Knight & S. Miller - 2007 - Journal of Symbolic Logic 72 (3):1031 - 1040.
The computable dimension of trees of infinite height.Russell Miller - 2005 - Journal of Symbolic Logic 70 (1):111-141.
The Block Relation in Computable Linear Orders.Michael Moses - 2011 - Notre Dame Journal of Formal Logic 52 (3):289-305.
Every real closed field has an integer part.M. H. Mourgues & J. P. Ressayre - 1993 - Journal of Symbolic Logic 58 (2):641-647.
Prime models of finite computable dimension.Pavel Semukhin - 2009 - Journal of Symbolic Logic 74 (1):336-348.

Analytics

Added to PP
2013-10-27

Downloads
67 (#234,137)

6 months
9 (#250,037)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Erratum to: Limit computable integer parts.Paola D’Aquino, Julia Knight & Karen Lange - 2015 - Archive for Mathematical Logic 54 (3-4):487-489.

Add more citations

References found in this work

Computable structures and the hyperarithmetical hierarchy.C. J. Ash - 2000 - New York: Elsevier. Edited by J. Knight.
A Decision Method for Elementary Algebra and Geometry.Alfred Tarski - 1952 - Journal of Symbolic Logic 17 (3):207-207.
A Decision Method for Elementary Algebra and Geometry.Alfred Tarski - 1949 - Journal of Symbolic Logic 14 (3):188-188.
Every real closed field has an integer part.M. H. Mourgues & J. P. Ressayre - 1993 - Journal of Symbolic Logic 58 (2):641-647.

View all 9 references / Add more references