Abstract
It is well known that saturation of ideals is closely related to the “antichain-catching” phenomenon from Foreman–Magidor–Shelah [10]. We consider several antichain-catching properties that are weaker than saturation, and prove:If${\cal I}$is a normal ideal on$\omega _2 $which satisfiesstationary antichain catching, then there is an inner model with a Woodin cardinal;For any$n \in \omega $, it is consistent relative to large cardinals that there is a normal ideal${\cal I}$on$\omega _n $which satisfiesprojective antichain catching, yet${\cal I}$is not saturated. This provides a negative answer to Open Question number 13 from Foreman’s chapter in the Handbook of Set Theory.