# Immunity properties and strong positive reducibilities

Archive for Mathematical Logic 50 (3-4):341-352 (2011)

# Abstract

We use certain strong Q-reducibilities, and their corresponding strong positive reducibilities, to characterize the hyperimmune sets and the hyperhyperimmune sets: if A is any infinite set then A is hyperimmune (respectively, hyperhyperimmune) if and only if for every infinite subset B of A, one has \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{K}\not\le_{\rm ss} B}$$\end{document} (respectively, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{K}\not\le_{\overline{\rm s}} B}$$\end{document}): here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\le_{\overline{\rm s}}}$$\end{document} is the finite-branch version of s-reducibility, ≤ss is the computably bounded version of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\le_{\overline{\rm s}}}$$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{K}}$$\end{document} is the complement of the halting set. Restriction to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^0_2}$$\end{document} sets provides a similar characterization of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^0_2}$$\end{document} hyperhyperimmune sets in terms of s-reducibility. We also show that no \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \geq_{\overline{\rm s}}\overline{K}}$$\end{document} is hyperhyperimmune. As a consequence, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\deg_{\rm s}(\overline{K})}$$\end{document} is hyperhyperimmune-free, showing that the hyperhyperimmune s-degrees are not upwards closed.

## PhilArchive

Upload a copy of this work     Papers currently archived: 86,336

Setup an account with your affiliations in order to access resources via your University's proxy server

# Similar books and articles

Baire reductions and good Borel reducibilities.Luca Motto Ros - 2010 - Journal of Symbolic Logic 75 (1):323-345.
Ethical immunity in business: A response to two arguments. [REVIEW]Andrew Piker - 2002 - Journal of Business Ethics 36 (4):337 - 346.
A Vindication of Strong Aesthetic Supervenience.Robert Fudge - 2005 - Philosophical Papers 34 (2):149-171.
Classifying positive equivalence relations.Claudio Bernardi & Andrea Sorbi - 1983 - Journal of Symbolic Logic 48 (3):529-538.
Q1-degrees of c.e. sets.R. Sh Omanadze & Irakli O. Chitaia - 2012 - Archive for Mathematical Logic 51 (5-6):503-515.
Parliamentary immunity: Protecting democracy or protecting corruption?Simon Wigley - 2003 - Journal of Political Philosophy 11 (1):23–40.
The price of non-reductive moral realism.Ralph Wedgwood - 1999 - Ethical Theory and Moral Practice 2 (3):199-215.

2013-10-27

17 (#710,747)

6 months
1 (#865,432)