Square principles with tail-end agreement

Archive for Mathematical Logic 54 (3-4):439-452 (2015)
  Copy   BIBTEX

Abstract

This paper investigates the principles □λ,δta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{{\rm ta}}}_{\lambda,\delta}}$$\end{document}, weakenings of □λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_\lambda}$$\end{document} which allow δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta}$$\end{document} many clubs at each level but require them to agree on a tail-end. First, we prove that □λ,<ωta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{\rm {ta}}}_{\lambda,< \omega}}$$\end{document} implies □λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_\lambda}$$\end{document}. Then, by forcing from a model with a measurable cardinal, we show that □λ,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_{\lambda,2}}$$\end{document} does not imply □λ,δta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{\rm{ta}}}_{\lambda,\delta}}$$\end{document} for regular λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document}, and □δ+,δta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{\rm{ta}}}_{\delta^+,\delta}}$$\end{document} does not imply □δ+,<δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_{\delta^+,< \delta}}$$\end{document}. With a supercompact cardinal the former result can be extended to singular λ, and the latter can be improved to show that □λ,δta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{\rm {ta}}}_{\lambda,\delta}}$$\end{document} does not imply □λ,<δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_{\lambda,< \delta}}$$\end{document} for δ<λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta < \lambda}$$\end{document}.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 107,286

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
A parallel to the null ideal for inaccessible $$\lambda $$ λ : Part I.Saharon Shelah - 2017 - Archive for Mathematical Logic 56 (3-4):319-383.
Peter Fishburn’s analysis of ambiguity.Mark Shattuck & Carl Wagner - 2016 - Theory and Decision 81 (2):153-165.

Analytics

Added to PP
2015-03-22

Downloads
34 (#776,529)

6 months
4 (#1,134,802)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Fresh subsets of ultrapowers.Assaf Shani - 2016 - Archive for Mathematical Logic 55 (5-6):835-845.

Add more citations

References found in this work

Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
Combinatorial principles in the core model for one Woodin cardinal.Ernest Schimmerling - 1995 - Annals of Pure and Applied Logic 74 (2):153-201.
Separating weak partial square principles.John Krueger & Ernest Schimmerling - 2014 - Annals of Pure and Applied Logic 165 (2):609-619.

Add more references