# Square principles with tail-end agreement

Archive for Mathematical Logic 54 (3-4):439-452 (2015)

# Abstract

This paper investigates the principles □λ,δta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{{\rm ta}}}_{\lambda,\delta}}$$\end{document}, weakenings of □λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_\lambda}$$\end{document} which allow δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta}$$\end{document} many clubs at each level but require them to agree on a tail-end. First, we prove that □λ,<ωta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{\rm {ta}}}_{\lambda,< \omega}}$$\end{document} implies □λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_\lambda}$$\end{document}. Then, by forcing from a model with a measurable cardinal, we show that □λ,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_{\lambda,2}}$$\end{document} does not imply □λ,δta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{\rm{ta}}}_{\lambda,\delta}}$$\end{document} for regular λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document}, and □δ+,δta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{\rm{ta}}}_{\delta^+,\delta}}$$\end{document} does not imply □δ+,<δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_{\delta^+,< \delta}}$$\end{document}. With a supercompact cardinal the former result can be extended to singular λ, and the latter can be improved to show that □λ,δta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square^{{\rm {ta}}}_{\lambda,\delta}}$$\end{document} does not imply □λ,<δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_{\lambda,< \delta}}$$\end{document} for δ<λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\delta < \lambda}$$\end{document}.

## PhilArchive

Upload a copy of this work     Papers currently archived: 91,069

Setup an account with your affiliations in order to access resources via your University's proxy server

# Similar books and articles

Separating weak partial square principles.John Krueger & Ernest Schimmerling - 2014 - Annals of Pure and Applied Logic 165 (2):609-619.
Squares and covering matrices.Chris Lambie-Hanson - 2014 - Annals of Pure and Applied Logic 165 (2):673-694.
Rationality in Agreement.Gilbert Harman - 1988 - Social Philosophy and Policy 5 (2):1.
Chang’s Conjecture and weak square.Hiroshi Sakai - 2013 - Archive for Mathematical Logic 52 (1-2):29-45.
The traditional square of opposition.Terence Parsons - 2008 - Stanford Encyclopedia of Philosophy.
MRP , tree properties and square principles.Remi Strullu - 2011 - Journal of Symbolic Logic 76 (4):1441-1452.
Is an agreement an exchange of intentions?Joe Mintoff - 2004 - Pacific Philosophical Quarterly 85 (1):44–67.
﻿Logical Geometries and Information in the Square of Oppositions.Hans5 Smessaert & Lorenz6 Demey - 2014 - Journal of Logic, Language and Information 23 (4):527-565.
A relative of the approachability ideal, diamond and non-saturation.Assaf Rinot - 2010 - Journal of Symbolic Logic 75 (3):1035-1065.

2015-03-22

17 (#765,400)

6 months
1 (#1,149,473)