Sparse parameterized problems

Annals of Pure and Applied Logic 82 (1):1-15 (1996)
  Copy   BIBTEX

Abstract

Sparse languages play an important role in classical structural complexity theory. In this paper we introduce a natural definition of sparse problems for parameterized complexity theory. We prove an analog of Mahaney's theorem: there is no sparse parameterized problem which is hard for the tth level of the W hierarchy, unless the W hierarchy itself collapses up to level t. The main result is proved for the most general form of parametric many:1 reducibility, where the parameter functions are not assumed to be recursive. This provides one of the few instances in parameterized complexity theory of a full analog of a major classical theorem. The proof involves not only the standard technique of left sets, but also substantial circuit combinatorics to deal with the problem of small weft, and a diagonalization to cope with potentially nonrecursive parameter functions. The latter techniques are potentially of interest for further explorations of parameterized complexity analogs of classical structural results

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,219

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2014-01-16

Downloads
8 (#1,249,165)

6 months
2 (#1,157,335)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations