Modal sequents for normal modal logics

Mathematical Logic Quarterly 39 (1):231-240 (1993)
  Copy   BIBTEX

Abstract

We present sequent calculi for normal modal logics where modal and propositional behaviours are separated, and we prove a cut elimination theorem for the basic system K, so as completeness theorems both for K itself and for its most popular enrichments. MSC: 03B45, 03F05.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,369

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Modal Tree‐Sequents.Claudio Cerrato - 1996 - Mathematical Logic Quarterly 42 (1):197-210.
Cut-free modal sequents for normal modal logics.Claudio Cerrato - 1993 - Notre Dame Journal of Formal Logic 34 (4):564-582.
Modal sequents and definability.Bruce M. Kapron - 1987 - Journal of Symbolic Logic 52 (3):756-762.
Kripke Completeness of Infinitary Predicate Multimodal Logics.Yoshihito Tanaka - 1999 - Notre Dame Journal of Formal Logic 40 (3):326-340.
Deep sequent systems for modal logic.Kai Brünnler - 2009 - Archive for Mathematical Logic 48 (6):551-577.
Normal monomodal logics can simulate all others.Marcus Kracht & Frank Wolter - 1999 - Journal of Symbolic Logic 64 (1):99-138.

Analytics

Added to PP
2013-12-01

Downloads
14 (#996,583)

6 months
4 (#798,692)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Introduction to metamathematics.Stephen Cole Kleene - 1952 - Groningen: P. Noordhoff N.V..
Modal Logic: An Introduction.Brian F. Chellas - 1980 - New York: Cambridge University Press.
Proof theory.Gaisi Takeuti - 1975 - New York, N.Y., U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co..
Introduction to Metamathematics.H. Rasiowa - 1954 - Journal of Symbolic Logic 19 (3):215-216.
Proof Theory.Gaisi Takeuti - 1990 - Studia Logica 49 (1):160-161.

View all 8 references / Add more references