Frontal Operators in Weak Heyting Algebras

Studia Logica 100 (1-2):91-114 (2012)
  Copy   BIBTEX

Abstract

In this paper we shall introduce the variety FWHA of frontal weak Heyting algebras as a generalization of the frontal Heyting algebras introduced by Leo Esakia in [ 10 ]. A frontal operator in a weak Heyting algebra A is an expansive operator τ preserving finite meets which also satisfies the equation $${\tau(a) \leq b \vee (b \rightarrow a)}$$, for all $${a, b \in A}$$. These operators were studied from an algebraic, logical and topological point of view by Leo Esakia in [ 10 ]. We will study frontal operators in weak Heyting algebras and we will consider two examples of them. We will give a Priestley duality for the category of frontal weak Heyting algebras in terms of relational spaces $${\langle X, \leq, T, R \rangle}$$ where $${\langle X, \leq, T \rangle}$$ is a WH -space [ 6 ], and R is an additional binary relation used to interpret the modal operator. We will also study the WH -algebras with successor and the WH -algebras with gamma. For these varieties we will give two topological dualities. The first one is based on the representation given for the frontal weak Heyting algebras. The second one is based on certain particular classes of WH -spaces

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 103,449

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2012-02-05

Downloads
70 (#311,921)

6 months
6 (#572,300)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

Varieties of complex algebras.Robert Goldblatt - 1989 - Annals of Pure and Applied Logic 44 (3):173-242.
Basic Propositional Calculus I.Mohammad Ardeshir & Wim Ruitenburg - 1998 - Mathematical Logic Quarterly 44 (3):317-343.
Bounded distributive lattices with strict implication.Sergio Celani & Ramon Jansana - 2005 - Mathematical Logic Quarterly 51 (3):219-246.
A Closer Look at Some Subintuitionistic Logics.Ramon Jansana & Sergio Celani - 2001 - Notre Dame Journal of Formal Logic 42 (4):225-255.

View all 13 references / Add more references