Business Ethics Quarterly:1-34 (forthcoming)

Abstract
Responsible innovation in artificial intelligence calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of actors from the AI industry within a deliberative system. We develop a new framework of responsibilities for AI innovation as well as a deliberative governance approach for enacting these responsibilities. In elucidating this approach, we show how actors from the AI industry can most effectively engage with experts and nonexperts in different social venues to facilitate well-informed judgments on opaque AI systems and thus effectuate their democratic governance.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1017/beq.2021.42
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 70,008
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

View all 44 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Deep Learning and Artificial Intelligence: X, XX, XXX.Ilexa Yardley - 2017 - Https://Medium.Com/the-Circular-Theory/.
Diagnosis of Pneumonia Using Deep Learning.Alaa M. A. Barhoom & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):48-68.
Diagnosis of Blood Cells Using Deep Learning.Ahmed J. Khalil & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):69-84.
Classification of Real and Fake Human Faces Using Deep Learning.Fatima Maher Salman & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):1-14.

Analytics

Added to PP index
2022-04-08

Total views
3 ( #1,357,095 of 2,505,153 )

Recent downloads (6 months)
3 ( #209,577 of 2,505,153 )

How can I increase my downloads?

Downloads

My notes