A Reassessment of Cantorian Abstraction based on the ε-operator

Synthese (forthcoming)
  Copy   BIBTEX

Abstract

Cantor's abstractionist account of cardinal numbers has been criticized by Frege as a psychological theory of numbers which leads to contradiction. The aim of the paper is to meet these objections by proposing a reassessment of Cantor's proposal based upon the set theoretic framework of Bourbaki - called BK - which is a First-order set theory extended with Hilbert's ε-operator. Moreover, it is argued that the BK system and the ε-operator provide a faithful reconstruction of Cantor's insights on cardinal numbers. I will introduce first the axiomatic setting of BK and the definition of cardinal numbers by means of the ε-operator. Then, after presenting Cantor's abstractionist theory, I will point out two assumptions concerning the definition of cardinal numbers that are deeply rooted in Cantor’s work. I will claim that these assumptions are supported as well by the BK definition of cardinal numbers, which will be compared to those of Zermelo-von Neumann and Frege-Russell. On the basis of these similarities, I will make use of the BK framework in meeting Frege's objections to Cantor's proposal. A key ingredient in the defence of Cantorian abstraction will be played by the role of representative sets, which are arbitrarily denoted by the ε-operator in the BK definition of cardinal numbers.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 99,484

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Frege on Identity and Identity Statements: 1884/1903.Matthias Schirn - forthcoming - History and Philosophy of Logic:1-22.
Galileo’s paradox and numerosities.Piotr Błaszczyk - 2021 - Philosophical Problems in Science 70:73-107.
Georg cantor's influence on bertrand russell.I. Grattan-Guinness - 1980 - History and Philosophy of Logic 1 (1-2):61-93.
Frege's Cardinals Do Not Always Obey Hume's Principle.Gregory Landini - 2017 - History and Philosophy of Logic 38 (2):127-153.
Cantor's Abstractionism and Hume's Principle.Claudio Ternullo & Luca Zanetti - 2021 - History and Philosophy of Logic 43 (3):284-300.
Transfinite Cardinals in Paraconsistent Set Theory.Zach Weber - 2012 - Review of Symbolic Logic 5 (2):269-293.
A set theory with Frege-Russell cardinal numbers.Alan McMichael - 1982 - Philosophical Studies 42 (2):141 - 149.
Inner models and large cardinals.Ronald Jensen - 1995 - Bulletin of Symbolic Logic 1 (4):393-407.

Analytics

Added to PP
2022-08-09

Downloads
63 (#279,056)

6 months
17 (#147,007)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Nicola Bonatti
Ludwig Maximilians Universität, München (PhD)

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references