Bosonization and iterative relations beyond field theories

Abstract

Solitons can be well described by the Lagrange formalism of effective field theories. But usually mass and coupling constants constitute phenomenological dimensions without any relation to the topological processes. This paper starts with a two-spinor Dirac equation in radial symmetry including vector Coulomb and scalar Lorentz potentials, and arrives after bosonization at the sine-Gordon equation. The keys of non-perturbative bosonization are in this case topological phase gradients (topological currents) that can be balanced in iterative processes providing for coupling constants driven by phase averaging and ``noise reduction'' in closed-loops and autoparametric resonance. A fundamental iterative spin-parity-asymmetry and dimensional shift quite near to the electron to proton mass ratio is found that can only be balanced by bosonization including Coulomb interaction.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 90,593

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-01-28

Downloads
16 (#774,541)

6 months
2 (#668,348)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Add more references