Philosophia Scientiae 17 (1):71-92 (2013)

Authors
Francesca Biagioli
University of Turin
Abstract
La philosophie de la géométrie de Hölder, si l’on s’en tient à une lecture superficielle, est la part la plus problématique de son épistémologie. Il soutient que la géométrie est fondée sur l’expérience à la manière de Helmholtz, malgré les objections sérieuses de Poincaré. Néanmoins, je pense que la position de Hölder mérite d’être discutée pour deux motifs. Premièrement, ses implications méthodologiques furent importantes pour le développement de son épistémologie. Deuxièmement, Poincaré utilise l’opposition entre le kantisme et l’empirisme comme un argument pour justifier son conventionnalisme géométrique. Cependant, Hölder montre qu’une stratégie alternative n’est pas exclue: il sait tirer parti des objections kantiennes pour développer un empirisme cohérent. En même temps, surtout dans Die mathematische Methode [Holder 1924], il adopte aussi bien les expressions que les conceptions de Kant. Dans mon article, je considère d’abord les arguments de Hölder pour la méthode déductive en géométrie dans Anschauung und Denken in der Geometrie [Holder 1900], en relation avec sa façon d’aborder la théorie de la quantité [Holder 1901]. Ensuite, j’examine son rapport avec Kant. À mon sens, les considérations méthodologiques de Hölder lui permettent de préfigurer une relativisation de l’a priori.Hölder’s philosophy of geometry might appear to be the most problematic part of his epistemology. He maintains that geometry depends on experience also after Poincaré’s fundamental criticism of Helmholtz. Nevertheless, I think that Hölder’s view is worth discussing, for two reasons. Firstly, the related methodological considerations were crucial for the development of his epistemology. Secondly, Poincaré uses the opposition between Kantianism and empiricism to argue for his geometrical conventionalism. Nevertheless, Hölder shows that an alternative strategy is not excluded: he profits from Kantian objections in order to develop a consistent empiricism. At the same time, especially in Die mathematische Methode [Holder 1924], he vindicates the Kantian view that mathematics is synthetic. In this paper, I will consider Hölder’s defence of the deductive method in geometry in Anschauung und Denken in der Geometrie [Holder 1900] in connection with his approach to the theory of quantity [Holder 1901]. Moreover, I will discuss his connection with Kant. My suggestion is that Hölder’s methodological considerations enable him to foreshadow a relativized conception of the a priori.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.4000/philosophiascientiae.828
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 70,079
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Geometry and Measurement in Otto Hölder's Epistemology.Paola Cantù - 2013 - Philosophia Scientiae 17 (17-1):131-164.
Geometry and Measurement in Otto Hölder’s Epistemology.Paola Cantù - 2013 - Philosophia Scientiae 17 (1):131-164.
General Introduction.Paola Cantù & Schlaudt - 2013 - Philosophia Scientiae 17 (17-1).
The Origins of the Representational Theory of Measurement: Helmholtz, Hölder, and Russell.Joel Michell - 1993 - Studies in History and Philosophy of Science Part A 24 (2):185-206.

Analytics

Added to PP index
2017-02-17

Total views
8 ( #1,006,192 of 2,506,031 )

Recent downloads (6 months)
1 ( #416,828 of 2,506,031 )

How can I increase my downloads?

Downloads

My notes