Classifying positive equivalence relations

Journal of Symbolic Logic 48 (3):529-538 (1983)
  Copy   BIBTEX

Abstract

Given two (positive) equivalence relations ∼ 1 , ∼ 2 on the set ω of natural numbers, we say that ∼ 1 is m-reducible to ∼ 2 if there exists a total recursive function h such that for every x, y ∈ ω, we have $x \sim_1 y \operatorname{iff} hx \sim_2 hy$ . We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a "uniformity property" holds). This result allows us to state a classification theorem for positive equivalence relations (Theorem 2). We show that there exist nonisomorphic positive equivalence relations which are complete with respect to the above reducibility; in particular, we discuss the provable equivalence of a strong enough theory: this relation is complete with respect to reducibility but it does not correspond to a precomplete numeration. From this fact we deduce that an equivalence relation on ω can be strongly represented by a formula (see Definition 8) iff it is positive. At last, we interpret the situation from a topological point of view. Among other things, we generalize a result of Visser by showing that the topological space corresponding to a partition in e.i. sets is irreducible and we prove that the set of equivalence classes of true sentences is dense in the Lindenbaum algebra of the theory

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 107,286

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytic equivalence relations and bi-embeddability.Sy-David Friedman & Luca Motto Ros - 2011 - Journal of Symbolic Logic 76 (1):243 - 266.
Finitary reducibility on equivalence relations.Russell Miller & Keng Meng Ng - 2016 - Journal of Symbolic Logic 81 (4):1225-1254.
On Polynomial-Time Relation Reducibility.Su Gao & Caleb Ziegler - 2017 - Notre Dame Journal of Formal Logic 58 (2):271-285.

Analytics

Added to PP
2009-01-28

Downloads
251 (#114,308)

6 months
22 (#155,412)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Creative sets.John Myhill - 1955 - Mathematical Logic Quarterly 1 (2):97-108.
Creative sets.John Myhill - 1955 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 1 (2):97-108.
Theorie der Numerierungen I.Ju L. Eršov - 1973 - Mathematical Logic Quarterly 19 (19‐25):289-388.
Theorie der Numerierungen II.J. U. L. Eršov - 1975 - Mathematical Logic Quarterly 21 (1):473-584.

View all 7 references / Add more references