On transformations of constant depth propositional proofs
Annals of Pure and Applied Logic 170 (10):1176-1187 (2019)
Abstract
This paper studies the complexity of constant depth propositional proofs in the cedent and sequent calculus. We discuss the relationships between the size of tree-like proofs, the size of dag-like proofs, and the heights of proofs. The main result is to correct a proof construction in an earlier paper about transformations from proofs with polylogarithmic height and constantly many formulas per cedent.DOI
10.1016/j.apal.2019.05.002
My notes
Similar books and articles
Separation results for the size of constant-depth propositional proofs.Arnold Beckmann & Samuel R. Buss - 2005 - Annals of Pure and Applied Logic 136 (1-2):30-55.
Lower Bounds to the size of constant-depth propositional proofs.Jan Krajíček - 1994 - Journal of Symbolic Logic 59 (1):73-86.
The three dimensions of proofs.Yves Guiraud - 2006 - Annals of Pure and Applied Logic 141 (1):266-295.
A note on propositional proof complexity of some Ramsey-type statements.Jan Krajíček - 2011 - Archive for Mathematical Logic 50 (1-2):245-255.
Matrix identities and the pigeonhole principle.Michael Soltys & Alasdair Urquhart - 2004 - Archive for Mathematical Logic 43 (3):351-357.
Bounded Arithmetic, Propositional Logic and Complexity Theory.Jan Krajíček - 1995 - Cambridge University Press.
On the computational content of intuitionistic propositional proofs.Samuel R. Buss & Pavel Pudlák - 2001 - Annals of Pure and Applied Logic 109 (1-2):49-64.
Propositional consistency proofs.Samuel R. Buss - 1991 - Annals of Pure and Applied Logic 52 (1-2):3-29.
Simplified Lower Bounds for Propositional Proofs.Alasdair Urquhart & Xudong Fu - 1996 - Notre Dame Journal of Formal Logic 37 (4):523-544.
Normality, Non-contamination and Logical Depth in Classical Natural Deduction.Marcello D’Agostino, Dov Gabbay & Sanjay Modgil - 2020 - Studia Logica 108 (2):291-357.
Polynomial size proofs of the propositional pigeonhole principle.Samuel R. Buss - 1987 - Journal of Symbolic Logic 52 (4):916-927.
The complexity of propositional proofs.Nathan Segerlind - 2007 - Bulletin of Symbolic Logic 13 (4):417-481.
The complexity of propositional proofs.Alasdair Urquhart - 1995 - Bulletin of Symbolic Logic 1 (4):425-467.
Some remarks on lengths of propositional proofs.Samuel R. Buss - 1995 - Archive for Mathematical Logic 34 (6):377-394.
Analytics
Added to PP
2019-05-17
Downloads
16 (#670,075)
6 months
1 (#452,962)
2019-05-17
Downloads
16 (#670,075)
6 months
1 (#452,962)
Historical graph of downloads
References found in this work
Lower Bounds to the size of constant-depth propositional proofs.Jan Krajíček - 1994 - Journal of Symbolic Logic 59 (1):73-86.
Interpolation theorems, lower Bounds for proof systems, and independence results for bounded arithmetic.Jan Krajíček - 1997 - Journal of Symbolic Logic 62 (2):457-486.
Quantified propositional calculi and fragments of bounded arithmetic.Jan Krajíček & Pavel Pudlák - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (1):29-46.
Quantified propositional calculi and fragments of bounded arithmetic.Jan Krajíček & Pavel Pudlák - 1990 - Mathematical Logic Quarterly 36 (1):29-46.
An exponential separation between the parity principle and the pigeonhole principle.Paul Beame & Toniann Pitassi - 1996 - Annals of Pure and Applied Logic 80 (3):195-228.