} 2\}\$\$ P \ensuremath{>} 2}, volume = {55}, year = {2016} } ">

Neostability-properties of Fraïssé limits of 2-nilpotent groups of exponent $${p > 2}$$ p > 2

Archive for Mathematical Logic 55 (3-4):397-403 (2016)
  Copy   BIBTEX

Abstract

Let L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}$$\end{document} be the language of group theory with n additional new constant symbols c1,…,cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_1,\ldots,c_n}$$\end{document}. In L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}$$\end{document} we consider the class K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{K}}}$$\end{document} of all finite groups G of exponent p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p > 2}$$\end{document}, where G′⊆⟨c1G,…,cnG⟩⊆Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G'\subseteq\langle c_1^G,\ldots,c_n^G\rangle \subseteq Z}$$\end{document} and c1G,…,cnG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_1^G,\ldots,c_n^G}$$\end{document} are linearly independent. Using amalgamation we show the existence of Fraïssé limits D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}$$\end{document} of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{K}}}$$\end{document}. D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}$$\end{document} is Felgner’s extra special p-group. The elementary theories of the D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D}$$\end{document} are supersimple of SU-rank 1. They have the independence property.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 107,099

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Two-cardinal diamond and games of uncountable length.Pierre Matet - 2015 - Archive for Mathematical Logic 54 (3-4):395-412.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour, Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.

Analytics

Added to PP
2015-12-02

Downloads
34 (#775,558)

6 months
2 (#1,454,979)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Omega-Categorical Pseudofinite Groups.Dugald Macpherson & Katrin Tent - forthcoming - Journal of Symbolic Logic:1-14.

Add more citations

References found in this work

Model theory.Wilfrid Hodges - 2008 - Stanford Encyclopedia of Philosophy.
Simple theories.Byunghan Kim & Anand Pillay - 1997 - Annals of Pure and Applied Logic 88 (2-3):149-164.
Simple unstable theories.Saharon Shelah - 1980 - Annals of Mathematical Logic 19 (3):177.
Mekler's construction preserves CM-triviality.Andreas Baudisch - 2002 - Annals of Pure and Applied Logic 115 (1-3):115-173.

Add more references