Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze & David Sherry
Foundations of Science 22 (4):763-783 (2017)
Authors | |
Abstract |
Abraham Robinson’s framework for modern infinitesimals was developed half a century ago. It enables a re-evaluation of the procedures of the pioneers of mathematical analysis. Their procedures have been often viewed through the lens of the success of the Weierstrassian foundations. We propose a view without passing through the lens, by means of proxies for such procedures in the modern theory of infinitesimals. The real accomplishments of calculus and analysis had been based primarily on the elaboration of novel techniques for solving problems rather than a quest for ultimate foundations. It may be hopeless to interpret historical foundations in terms of a punctiform continuum, but arguably it is possible to interpret historical techniques and procedures in terms of modern ones. Our proposed formalisations do not mean that Fermat, Gregory, Leibniz, Euler, and Cauchy were pre-Robinsonians, but rather indicate that Robinson’s framework is more helpful in understanding their procedures than a Weierstrassian framework.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
ISBN(s) | |
DOI | 10.1007/s10699-016-9498-3 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
View all 39 references / Add more references
Citations of this work BETA
What Makes a Theory of Infinitesimals Useful? A View by Klein and Fraenkel.Vladimir Kanovei, K. Katz, M. Katz & Thomas Mormann - 2018 - Journal of Humanistic Mathematics 8 (1):108 - 119.
Gregory’s Sixth Operation.Tiziana Bascelli, Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Tahl Nowik, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (1):133-144.
Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms.Tiziana Bascelli, Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (2):267-296.
Fermat’s Dilemma: Why Did He Keep Mum on Infinitesimals? And the European Theological Context.Jacques Bair, Mikhail G. Katz & David Sherry - 2018 - Foundations of Science 23 (3):559-595.
Similar books and articles
Is Leibnizian Calculus Embeddable in First Order Logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
Ten Misconceptions From the History of Analysis and Their Debunking.Piotr Błaszczyk, Mikhail G. Katz & David Sherry - 2013 - Foundations of Science 18 (1):43-74.
Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts.Piotr Błaszczyk, Vladimir Kanovei, Mikhail G. Katz & David Sherry - 2017 - Foundations of Science 22 (1):125-140.
Leibniz Versus Ishiguro: Closing a Quarter Century of Syncategoremania.Tiziana Bascelli, Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, David M. Schaps & David Sherry - 2016 - Hopos: The Journal of the International Society for the History of Philosophy of Science 6 (1):117-147.
Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes From Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos.Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Mikhail G. Katz, Taras Kudryk, Semen S. Kutateladze & David Sherry - 2016 - Logica Universalis 10 (4):393-405.
The Church-Turing Thesis and Effective Mundane Procedures.Leon Horsten - 1995 - Minds and Machines 5 (1):1-8.
Proofs and Retributions, Or: Why Sarah Can’T Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
The Scope of Turing's Analysis of Effective Procedures.Jeremy Seligman - 2002 - Minds and Machines 12 (2):203-220.
Effective Procedures and Computable Functions.Carole E. Cleland - 1995 - Minds and Machines 5 (1):9-23.
"A Mathematical Proof Must Be Surveyable" What Wittgenstein Meant by This and What It Implies.Felix Mühlhölzer - 2006 - Grazer Philosophische Studien 71 (1):57-86.
Review of Paradoxes Afflicting Various Voting Procedures Where One Out of M Candidates (M ≥ 2) Must Be Elected. [REVIEW]Dan S. Felsenthal - unknown
Analytics
Added to PP index
2016-09-22
Total views
10 ( #896,280 of 2,498,995 )
Recent downloads (6 months)
1 ( #421,180 of 2,498,995 )
2016-09-22
Total views
10 ( #896,280 of 2,498,995 )
Recent downloads (6 months)
1 ( #421,180 of 2,498,995 )
How can I increase my downloads?
Downloads