Abstract
Adding a transparent truth predicate to a language completely governed by classical logic is not possible. The trouble, as is well-known, comes from paradoxes such as the Liar and Curry. Recently, Cobreros, Egré, Ripley and van Rooij have put forward an approach based on a non-transitive notion of consequence which is suitable to deal with semantic paradoxes while having a transparent truth predicate together with classical logic. Nevertheless, there are some interesting issues concerning the set of metainferences validated by this logic. In this paper, we show that this logic, once it is adequately understood, is weaker than classical logic. Moreover, the logic is in a way similar to the paraconsistent logic LP