Abstract
It is widely accepted that a theory of truth for arithmetic should be consistent, but -consistency is a highly desirable feature for such theories. The point has already been made for first-order languages, though the evidence is not entirely conclusive. We show that in the second-order case the consequence of adopting -inconsistent theories of truth are considered: the revision theory of nearly stable truth T # and the classical theory of symmetric truth FS. Briefly, we present some conceptual problems with ω-inconsistent theories, and demonstrate some technical results that support our criticisms of such theories.