Corrigendum to “The d.r.e. degrees are not dense” [Ann. Pure Appl. Logic 55 (1991) 125–151]

Annals of Pure and Applied Logic 168 (12):2164-2165 (2017)
  Copy   BIBTEX

Abstract

This article has no associated abstract. (fix it)

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,202

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The d.r.e. degrees are not dense.S. Cooper, Leo Harrington, Alistair Lachlan, Steffen Lempp & Robert Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
Infima of d.r.e. degrees.Jiang Liu, Shenling Wang & Guohua Wu - 2010 - Archive for Mathematical Logic 49 (1):35-49.
Bounding computably enumerable degrees in the Ershov hierarchy.Angsheng Li, Guohua Wu & Yue Yang - 2006 - Annals of Pure and Applied Logic 141 (1):79-88.
Intervals containing exactly one c.e. degree.Guohua Wu - 2007 - Annals of Pure and Applied Logic 146 (1):91-102.
The computable Lipschitz degrees of computably enumerable sets are not dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.
Completely mitotic c.e. degrees and non-jump inversion.Evan J. Griffiths - 2005 - Annals of Pure and Applied Logic 132 (2-3):181-207.
The $\Pi^0_2$ Enumeration Degrees are Not Dense.William Calhoun & Theodore Slaman - 1996 - Journal of Symbolic Logic 61 (3):1364-1379.
The Isolated D. R. E. Degrees are Dense in the R. E. Degrees.Geoffrey Laforte - 1996 - Mathematical Logic Quarterly 42 (1):83-103.
Infima in the d.r.e. degrees.D. Kaddah - 1993 - Annals of Pure and Applied Logic 62 (3):207-263.
Then-rea enumeration degrees are dense.Alistair H. Lachlan & Richard A. Shore - 1992 - Archive for Mathematical Logic 31 (4):277-285.

Analytics

Added to PP
2017-08-02

Downloads
14 (#930,021)

6 months
6 (#417,196)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

The d.r.e. degrees are not dense.S. Cooper, Leo Harrington, Alistair Lachlan, Steffen Lempp & Robert Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.

Add more references